零基礎入門的機器學習圖鑑:2大類機器學習╳ 17種演算法 ╳ Python基礎教學,讓你輕鬆學以致用

‧問題分類(分類):羅吉斯迴歸、單純貝氏分類器
‧找出特徵關聯性(迴歸):線性迴歸、正則化
‧分類且找出關聯性:支持向量機、Kernel法、隨機森林、類神經網路、kNN

◎ 8種無監督式學習:提供電腦問題與特徵,讓電腦自行分類,例如找出有車的照片
‧選擇特徵與數量(降維): PCA、LSA、NMF、LDA、LLE、t-SNE
‧特徵分類(分群):k-means分群法、高斯混合分布

【Python是時下最熱門的程式語言】
在學習機器學習的演算法時,
Python是最容易上手,適用於各作業系統,也完全免費的程式語言軟體,
與機器學習及統計相關的函式庫也非常豐富。
本書所有範例程式碼都是使用Python語法編寫,
因此書中還附有Python基礎教學。

本書用一張圖帶你掌握機器學習的整體輪廓,學會機器學習的基礎知識和概念,
了解在學習機器學習的演算法時最重要的處理過程,
幫你學會如何精準選對演算法,只要掌握每一種演算法的性質,
相信就能學會實際操作機器學習,解決生活和工作上的問題,讓AI為你所用!

【本書適合哪些人閱讀?】
‧對機器學習感興趣,已經開始學習的人
‧已懂得一些機器學習演算法,想學習更多的人
‧不熟悉方程式,看不懂機器學習專書的人
‧想學會如何因應問題來選擇機器學習演算法的人
‧有程式設計經驗,有能力執行範例程式碼的人

★專家推薦:

李忠謀|國立台灣師範大學資訊工程系教授、國際資訊奧林匹亞競賽主席
資工心理人|竹謙科技研發工程師
鄭國威|泛科知識公司知識長
蘇書平|為你而讀/人資商學院創辦人

「這本書可作為對機器學習完全不懂的新手,踏入這個領域的敲門磚,本書先是說明機器學習的基礎知識,接著介紹17種機器學習的基礎演算法,每個章節皆有實際的程式碼範例,並且用圖片來視覺化這些演算法是如何去處理分類資料,建議讀者可以邊學邊做,嘗試著書中的程式碼來解決問題,相信會有滿滿的收穫,讓您在讀完本書之後,也能夠掌握機器學習的基礎知識,不管是要面對實作的問題,或者是學習更進階的方法,都能夠無往不利。」──資工心理人,竹謙科技研發工程師

最新生活新聞
行動版 電腦版