零基礎入門的機器學習圖鑑:2大類機器學習╳ 17種演算法 ╳ Python基礎教學,讓你輕鬆學以致用

第3章 非監督式學習
10 PCA
11 LSA
12 NMF
13 LDA
14 k-means分群法
15 高斯混合分布
16 LLE
17 t-SNE

第4章 評估方法及各種資料的運用
4.1 評估方法
監督式學習的評估
分類問題的評估方法
迴歸問題的評估方法
均方誤差與決定係數的差異
使用不同演算法時的差異
超參數的設定
模型的過度擬合
防止過度擬合的方法
訓練資料與測試資料的切分
交叉驗證
超參數的搜尋

4.2 文字資料的轉換處理
透過詞彙計數進行轉換
透過TF-IDF進行轉換
套用機器學習模型

4.3 圖像資料的轉換處理
將畫素資訊直接視為數值
輸入轉換後的向量資料,套用機器學習模型

第5章 環境設置
5.1 安裝Python3
Windows

最新生活新聞
行動版 電腦版